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Abstract

This article examines and proposes a dietary chain model with a prey shelter and alternative
food sources. It is anticipated that mid-predators’ availability is positively correlated with the
number of refuges. The solution’s existence and exclusivity are examined. It is established that
the solution is bounded. It is explored whether all potential equilibrium points exist and are
locally stable. The Lyapunov approach is used to investigate the equilibrium points’ worldwide
stability. Utilizing a Sotomayor theorem application, local bifurcation is studied. Numerical
simulation is used to better comprehend the dynamics of the model and define the control set
of parameters.
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1 Introduction

Numerous studies have demonstrated a rise in interest in the use of mathematical models in
ecology, for examples, the Allee effect’s influence on the dynamics of a delayed prey-predator
model with a Hattaf-Yousfi functional response was investigated by Bouziane et al. [3]. By ad-
justing the superpredator’s kill rate parameter, Das and Bhardwaj [6] have studied the intricacy of
temporal dynamics in the three-species food web model, including the Holling type II functional
response. Holling [12] covered the most recent developments in a systems study of predation,
which addresses the functional reactions of predators to the density of their prey. The rivalry be-
tween two prey and one predator, taking into account both a Holling type II functional response
and an additive Allee effect in the predator population, was examined by Kumar and Gunasun-
dari [20]. In [17], a prey-predator paradigmwith independent harvesting in both species and prey
refuge is discussed. Mondal and Samanta [22], who included nonlinear prey refuge to prevent
predator extinction, examined the fear effect’s outcomes for the dynamics of predator-prey inter-
action. An analysis using mathematics has been conducted on prey-predator ecological models in
which the predator has an alternate food source and the prey has a partial cover [28]. However,
Tian and Xu [37] examined a predator-prey system with Holling type II functional response and
stage structure. It has garnered considerable interest from numerous scientific fields. Early stud-
ies revealed that the availability of resources is crucial. Numerous studies looked at how alternate
resources affected food chains. Researchers found that when resources were rare, populations
would decline as individuals battled for access to the scarce resources, according to Senthamara
and Vijayalakhmi [35].

Numerous studies by scientists have examined how the movements of societies and popula-
tions are impacted by births and deaths, for example, amathematical model consisting of two prey
and one predator with a Beddington-DeAngelis functional response is proposed and analyzed by
Naji and Balasim [25]. However, Naji et al. [27] have proposed and studied a model food chain
involving a specialist and a generalist predator. Therefore, the food chain is crucial since all liv-
ing things, regardless of size, depend on one another to survive. Academic journals have given
a lot of attention to the study of dietary chains and how animals stay alive by consuming other
species. It educates people that every living thing is reliant on other living things for survival. It
is crucial to realize that even a small disruption in the natural food chain or feeding habits can
cause a large number of species to change their behavior.Jabr and Bahlool [14] have studied the
role of a prey refuge, depending on both species, in the dynamics of a food web system. Satar
and Naji [34] investigated the stability and bifurcation of a prey-predator-scavenger model in the
presence of toxicants and harvesting. Ws et al. [32] proposed and studied a mathematical model
of three-species food chain interaction with mixed functional response.

On the other hand, a refuge, a word from ecology that refers to a situation in which an organ-
ism gains safety by hiding in obscure locations, piqued the attention ofmany scientists. A diseased
prey-predator model with prey serving as a haven and predators providing food was presented
and examined by Abdulghafour and Naji [1]. On the other hand, Bahlool et al. [2] examined
chaos and order in a prey-predator paradigm that included sickness, refuge, and harvesting. Prey
refuge was added by Gkana and Zachilas [11] to a prey-predator model that included population
breakouts and a Holling type I functional response. Huang et al. [13] looked into the stabil-
ity analysis of a prey-predator model using a Holling type III response function that included a
prey refuge. Kar [16] examined the stability study of a predator-prey model with a prey refuge.
Mondal and Samanta [24] examined the dynamics of a predator-prey system that provides addi-
tional food, where the prey’s refuge is reliant on both species and there is a constant harvest for
the predators. Mondal et al. [23] examined the dynamics of a predator-prey population under
nonlinear prey refuge and fear effects in the presence of resource subsidy. Sarwardi et al. [33]
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examined the dynamic behavior of a two-predator model with prey shelter.

Additionally, De Rossi et al. [8] examined the impact of refuge on prey and the importance of
the refuge component. Refuge in prey was hypothesized and researched by Naji and Majeed [26]
as a protective characteristic versus predation and harvesting obtained from predators. Sih [36]
investigated the effects of prey refuge and hunting activities. After Das et al. [7] examined the
effects of refuges’ availability on the interaction of predators and prey, Molla et al. [21]proposed
a mathematical framework for prey-predator enabling prey refuge dependent on each prey and
predator species. According to Ko and Ryu’s findings in [18], the dynamics of the system integrat-
ing a prey refuge with homogenous Neumann boundary conditions are significantly influenced
by the configuration of the functional response. The unstable impact of the prey refuge under
specific circumstances is particularly the intriguing conclusion. A prey-predator model based on
the second kind of Holling predation rate that takes into account the harvesting process of each
species was described by Kar et al. [15]. They have also thought about collecting each species and
delaying the reproductive cycle of the predator group.

The availability of substitute foods can influence biological control through a number of meth-
ods, according to numerous studies. With a third kind of Holling predation rate, Agarwal and
Kumar [19] investigated the impact of substitute resources for top predators in the dietary chain
model. According to Sahoo’s theory [30], substitute nourishment has a stabilizing effect onpredator-
prey interactions. In later works, different investigations on the effects of an alternate meal can be
found. See for examples: a prey-predator model with a haven for prey and extra food for preda-
tors in a changing environment was presented and researched by Das and Samanta [4]. In con-
trast, Das et al.’s study [5] examined how different diets might regulate chaotic dynamics in a
predator-prey scenario when the predator had a sickness. In a time-varying prey-predator model
with different delays and substitute food sources for predators, Devi and Jana [9] investigated
the function of fear. Ghosh et al. [10] examined prey-predator dynamics, wherein the predator
receives more food from the prey shelter. Sahoo et al. [31] examined the impact of substitute
resources on the dynamics of the harvested-predator-prey model. Given the aforementioned in-
formation, in order to address the consequences of alternative resources for a top predator, the
researchers were driven to examine the mathematical depiction of prey refuge in a three-species
dietary chain using a second kind of Holling predation rate.

2 Formulation of the Mathematical Framework

According to the following hypotheses, a mathematical framework of a three-species dietary
chain that consists of prey, mid-predators, and top predators and combines a prey refuge and a
substitute source of food for a top predator is developed:

1. The model is designed to include three species, with x(t) representing the prey populations
at time t and y(t) and z(t) representing the mid- and top predator populations at time t,
respectively. The killing processes have been carried out in accordance with the second kind
of Holling predation rate.

2. While the prey expands logistically in the absence of a predator, the mid-predator expands
logistically in addition to the food obtained by its predation on the prey. Lack of food causes
the mid-predator to drop rapidly.

3. The upper predator also has other food sources from its surroundings in addition to the food
it takes from the mid-predator. The upper predators engage in intra-specific conflict with
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one another. In addition, when nourishment is scarce, the top predator drops rapidly.

4. Last, but not least, it is hypothesized that the remaining prey population is vulnerable to be-
ing devoured by a mid-predator because the prey species defends itself by offering a refuge
that is proportional to the number of mid-predators.

The next collection of nonlinear differential equations of first order may be utilized for expressing
the evolution of the food chain under the aforementioned suppositions:

dx

dt
= rx

(
1− x

K

)
− a1 (x− xR) y

a+ (x− xR)
,

dy

dt
= sy

(
1− y

L

)
+

a2 (x− xR) y

a+ (x− xR)
− b1yz

b+ y
− d1y,

dz

dt
=

b2yz

b+ y
+A1z −A2z

2 − d2z,

(1)

where Table 1 describes every parameter, and they’re all thought of as positive constants.
If xR = cxy is substituted, system (1) will be as follows:

dx

dt
= x

[
r
(
1− x

K

)
− a1 (1− cy) y

a+ x (1− cy)

]
= xF1,

dy

dt
= y

[
s
(
1− y

L

)
+

a2 (1− cy)x

a+ x (1− cy)
− b1z

b+ y
− d1

]
= yF2,

dz

dt
= z

[
b2y

b+ y
+A1 −A2z − d2

]
= zF3,

(2)

with x (0) ≥ 0, y(0) ≥ 0 and z(0) ≥ 0. The functions of the vector F = (F1, F2, F3)
T are Lip-

schitzian because they are clearly continuous and have continuously differential functions on
Ξ =

{
(x, y, z) ∈ R3 : x ≥ 0, y ≥ 0, z ≥ 0} . Consequently, the solution to system (2) already exists

and is unique.

Table 1: The parameters description.

Parameter Description
a1 and b1 The catching rates of y and z respectively.
a and b The half-saturation constants for y and z respectively.
a2 and b2 The food transformation rates into y and z respectively.
r andK The intrinsic growth rate and carrying capacity for x.
s and L The real growth rate and carrying capacity for the y species.
d1 The natural mortality rate of the y species.
A1 A substitute food rate for the z species.
A2 The intraspecific competition rate within the population of the z species.
d2 The natural mortality rate of the z species.
c ∈ [0, 1] The proportionality constant of prey refuge with y, so that y ≤ 1

c .

734



Z. M. Hadi et al. Malaysian J. Math. Sci. 17(4): 731–754(2023) 731 - 754

3 Limitations of the System

This section investigates the uniform boundedness of the system (2)’s trajectory as stated in
the following theorem.

Theorem 3.1. System (2) is a dissipative system in Ξ.

Proof. It is sufficient to demonstrate that all the trajectories of system (2) are uniformly bounded
in order to demonstrate this theorem. If you take a look at the function w(t), which is the sum of
solutions in Ξ, as represented by w (t) = x (t) + y (t) + z(t), then,

dw

dt
=

dx

dt
+

dy

dt
+

dz

dt

= rx
(
1− x

K

)
−

(a1 − a2) (x− xR) y

a+ (x− xR)
+ sy

(
1− y

L

)
− (b1 − b2) yz

b+ y
− d1y +A1z

1− z(
A1

A2

)
− d2z,

dw

dt
≤ (r + 1)

2
K

4r
+

sL

4
+

A1
2

4A2
− µ (x+ y + z) = ρ− µw,

where µ = min {1, d1, d2} and ρ =
(r + 1)

2
K

4r
+

sL

4
+

A1
2

4A2
, therefore we obtain,

dw

dt
+ µw ≤ ρ.

Since the ensuing differential inequality can be solved, it is discovered that for t → ∞; w(t) ≤ ρ

µ
,

which results in the dissipative of the system (2).

According to the aforementioned theorem, system (2) has an attractor that belongs to the Ξ cate-
gory.

4 The Equilibria of the System

For system (2), there are a maximum of eight equilibrium points (EPs). Here are some de-
scriptions of them:

1. The points e0 = (0, 0, 0) and e1 = (x̆, 0, 0) = (K, 0, 0) located unconditionally.

2. The point e2 = (0, ŷ, 0) =

(
0,

(s− d1)L

s
, 0

)
is available if the following requirement occurs,

s > d1. (3)
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3. The point e3 = (0, 0, z) =

(
0, 0,

A1 − d2
A2

)
is available if the following requirement occurs,

A1 > d2. (4)

4. The y free point e4 = (x̆, 0, z) =

(
K, 0,

A1 − d2
A2

)
is available if the requirement (4) occurs.

5. The x free point e5 = (0, ˜̃y, ˜̃z) is available if the following requirements occur,

d2 <
b2y +A2(b+ y)

b+ y
, (5)

B3 > 0 and B1 < 0,

or

B3 > 0 and B2 > 0,

 , (6)

where ˜̃z =
b2y + (A1 − d2)(b+ y)

A2(b+ y)
, while the third-degree polynomial that is provided below

has ˜̃y as a positive root,

B0y
3 + B1y

2 + B2y + B3 = 0,

where,

B0 = −sA2 < 0,

B1 = (s− d1)A2L− 2sbA2,

B2 = 2 (s− d1)A2Lb− sA2b
2 − b1b2L− Lb1A1 + Lb1d2,

B3 = (s− d1)A2Lb
2 − b1A1bL+ Lbb1d2.

6. The z free point e6 = (ˇ̌x, ˇ̌y, 0) is available if the following requirements occur,

s

(
1−

ˇ̌y

L

)
< d1 < a2 + s

(
1−

ˇ̌y

L

)
, (7)

with a single set from the list below,

Q0 > 0, Q1 > 0, Q2 > 0, Q3 > 0, Q4 < 0,

Q0 > 0, Q1 > 0, Q2 > 0, Q3 > 0, Q4 > 0,

Q0 > 0, Q1 > 0, Q2 > 0, Q3 < 0, Q4 < 0,

Q0 > 0, Q1 > 0, Q2 < 0, Q3 < 0, Q4 < 0,

Q0 > 0, Q1 < 0, Q2 < 0, Q3 < 0, Q4 < 0,


, (8)

where ˇ̌x =
a
[
d1 − s

(
1− ˇ̌y

L

)]
[
a2 − d1 + s

(
1− ˇ̌y

L

)] (
1− cˇ̌y

) , while the fifth-degree polynomial that is pro-

vided below has ˇ̌y as a positive root,

Q5y
5 + Q4y

4 + Q3y
3 + Q2y

2 + Q1y + Q0 = 0,
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with,

Q0 = aa2r(a2 − d1 + s)− a2a2r

K
(d1 − s),

Q1 = aa2
2cr + aa2cd1r − 2a1a2d1 − 2a1a2s− a1d1

2 + 2a1d1s− a1s
2 + aa2crs+ acd1

2r

− 2acd1rs+ acrs2 − aa2rs

L
− a2a2rs

KL
+ 2a1a2d1,

Q2 =
aa2crs

L
+

2a1a2s

L
− 2a1d1s

L
+

2a1s
2

L
+ 2a1a2

2c+ 4a1a2cs+ 2a1cd1
2 − 4a1cd1s

+ 2a1cs
2 − 4a1a2cd1,

Q3 =
−a1s

2

L2
− 4a1a2cs

L
+

4a1cd1s

L
+

2a1cs
2

L
− a1a2

2c2

+ 2a1a2c
2d1 − 2a1a2c

2s2 − a1c
2d1

2 + 2a1c
2d1s− a1c

2s2,

Q4 =
2a1cs

2

L2
+

2a1c
2s

L
(a2 − d1 + s),

Q5 = −c2a1s
2

L2
.

7. The survival point e7 = (x∗, y∗, z∗), where z∗ =
b2y + (A1 − d2)(b+ y)

A2(b+ y)
, while (x∗, y∗) rep-

resents an intersection point of the next two isoclines,

g1 (x, y) = aKr +Krx− cKrxy − arx− rx2 + crx2y − a1Ky + a1cKy2 = 0,

g2 (x, y) = s− sy

L
+

a2x (1− cy)

a+ x (1− cy)
− b1

b+ y

(
b2y + (A1 − d2) (b+ y)

A2 (b+ y)

)
− d1 = 0,

 .

Direct computation shows that e7 is available uniquely if the following requirements occur,

bA2s+ b1d2 < b1A1 + bA2d1 < bA2 (s+ a2) + b1d2,

h1 < h2,

dy

dx
= − (∂g1/∂x)

(∂g1/∂y)
> 0,

dy

dx
= − (∂g2/∂x)

(∂g2/∂y)
< 0,


, (9)

with h1 = − (a−K)

2
+

1

2

√
(a−K)

2
+ 4aK, and h2 =

baA2 (d1 − s) + b1a(A1 − d2)

bA2 (s+ a2)− b1 (A1 − d2)− bA2d1
.

5 Stability and Bifurcation Locally

In this part, using the linearization approach and the Sotomayor theorem [29], respectively,
we explore the local stability and bifurcation of all potential EPs of the system (2).

It is simple to confirm that λ01 = r > 0, λ02 = s − d1 and λ03 = A1 − d2 are the values of the
roots of the variational matrix (VM) at e0 = (0, 0, 0). So, e0 is an unstable point because positive
eigenvalues occur.
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Theorem 5.1. The EP, e1 = (x̆, 0, 0), is asymptotically stable locally if the following requirements occur,

s+
a2K

a+K
< d1, (10)

A1 < d2. (11)

However, there is a transcritical bifurcation (TCB) a round e1 when the A1 = d2(≡ A∗
1).

Proof. Since the VM at the point e1 can be written as,

J (e1) =


−r − aa1K

(a+K)
2 0

0 s+
a2K

a+K
− d1 0

0 0 A1 − d2

 .

Obviously, J (e1) has the eigenvalues λ11 = −r < 0, λ12 = s +
a2K

a+K
− d1 and λ13 = A1 − d2,

which are negative if the conditions (10) and (11) holds. Thus, e1 is asymptotically stable locally.

Now, when A1 = A∗
1, then the third eigenvalue of J (e1, A

∗
1) becomes λ̌13 = 0. Moreover, it is

obtained that V̌ = (0, 0, 1)
T is the eigenvector related to λ̌13 = 0 of J (e1, A

∗
1), and φ̌ = (0, 0, 1)

T is
the eigenvector related to λ̌13 = 0 of [J (e1, A

∗
1)]

T . Also,

φ̌T

[
df

dA1
(e1, A

∗
1)

]
= 0, where f = (xF1, xF2, xF3)

T
,

φ̌T

[
d

dX
fA1(e1, A

∗
1)V̌

]
= 1 ̸= 0, where X = (x, y, z)

T
,

φ̌T

[
d2

dX2
f(e1, A

∗
1).(V̌ , V̌ )

]
= −2A2 ̸= 0.

Thus, by Sotomayor’s theorem, the TCB occurs.

Theorem 5.2. The EP, e2 = (0, ŷ, 0) =

(
0,

(s− d1)L

s
, 0

)
, is asymptotically stable locally if the following

requirements occur,

r +
a1cŷ

2

a
<

a1
a
ŷ, (12)

b2ŷ

b+ ŷ
+A1 < d2. (13)

However, there is a TCB a round e2 when the d2 =
b2ŷ

b+ ŷ
+A1(≡ d∗2).

Proof. From the VM at point e2 that can be represented as:

J (e2) =



r − a1ŷ

a
+

a1cŷ
2

a
0 0

−a2(1− cŷ)ŷ

a
d1 − s − b1ŷ

b+ ŷ

0 0
b2ŷ

b+ ŷ
+A1 − d2


.
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It is obvious that the eigenvalues are λ21 = r − a1ŷ

a
+

a1cŷ
2

a
, λ22 = d1 − s < 0, and

λ23 =
b2ŷ

b+ ŷ
+ A1 − d2. Therefore, the EP e2 is asymptotically stable locally if the conditions (12)

and (13) hold.

Now, when d2 = d∗2, then λ̂23 = 0 will be the third eigenvalue for J (e2, d
∗
2). Moreover, it

is obtained that V̂ = (0, β, 1)
T , where β = − b̂23

b̂22
< 0, is the eigenvector related to λ̂23 = 0 of

J (e2, d
∗
2), and φ̂ = (0, 0, 1)

T is the eigenvector related to λ̌13 = 0 of [J (e2, d
∗
2)]

T . Also,

φ̂T

[
df

dA1
(e2, d

∗
2)

]
= 0,

φ̂T

[
d

dX
fd2(e2, d

∗
2)V̂

]
= 1 ̸= 0,

φ̂T

[
d2

dX2
f(e2, d

∗
2).(V̂ , V̂ )

]
=

[
2bb2

(b+ y)
2 β − 2A2

]
̸= 0.

Thus, the TCB occurs.

It is simple to confirm that the VM at EP e3 = (0, 0, z) =

(
0, 0,

A1 − d2
A2

)
has the eigenvalues by

λ31 = r > 0, λ32 = s− b1
b
z − d1 and λ33 = −A2z < 0. Therefore, e3 is a saddle point.

Theorem 5.3. The y free EP, e4 = (x̆, 0, z) =

(
K, 0,

A1 − d2
A2

)
, is asymptotically stable locally if the

following requirement occurs,

s+
a2K

a+K
<

b1
b

(
A1 − d2

A2

)
+ d1. (14)

However, there is a TCB a round e4 when d1 = s+
a2K

a+K
− b1

b

(
A1 − d2

A2

)
(≡ d∗1).

Proof. Direct computation shows that the VM at EP e4 is given by,

J (e4) =



−r − aa1K

(a+K)
2 0

0 s+
a2K

a+K
− b1

b

(
A1 − d2

A2

)
− d1 0

0
b2
b

(
A1 − d2

A2

)
− (A1 − d2)


= [bij ] .

Consequently, the eigenvalues of J (e4) are λ41 = −r < 0, λ42 = s+
a2K

a+K
− b1

b

(
A1 − d2

A2

)
− d1,

and λ43 = − (A1 − d2) < 0. Therefore, e4 is asymptotically stable locally under condition (14).

Obviously, for d1 = d∗1 the second eigenvalues becomes λ42 = 0. Furthermore, it is obtained that

V = (α1, 1, α2)
T with α1 = −b12

b11
< 0 and α2 = −b32

b33
> 0, as an eigenvector of J (e4) related with

zero eigenvalue. While φ = (0, 1, 0)
T is an eigenvector of [J (e4)]

T related to zero eigenvalue.
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Also, it is easy to verify that,

φ
T
[
df

dd1
(e4, d

∗
1)

]
= 0,

φ
T
[

d

dX
fd1

(e4, d
∗
1)V

]
= 1 ̸= 0,

φ
T
[

d2

dX2
f (e4, d

∗
1) (V , V )

]
= 2

[
aa2

(a+K)
2α1 −

b1
b
α2 −

s

L
− aa2cK

(a+K)
2 − b1

b

(
A1 − d2

A2

)]
̸= 0.

Hence, the TCB occurs and the proof is done.

Theorem 5.4. The x free EP, e5 = (0, ˜̃y, ˜̃z), is asymptotically stable locally if the following requirements
occur,

r <
a1(1− c˜̃y)˜̃y

a
, (15)

b1˜̃z
(b+ ˜̃y)2 <

s

L
. (16)

However, there is a TCB a round e5 when =
a1˜̃y(1− c˜̃y)

a
(≡ r∗) provided that,

−a1˜̃y(1− c˜̃y)
aK

+
a1˜̃y(1− c˜̃y)2

a2
−

a1

(
1− 2c˜̃y)
a

ρ1 ̸= 0. (17)

Proof. The VM of system (2) at e5 can be determined by,

J (e5) =



r −
a1

(
1− c˜̃y) ˜̃y
a

0 0

a2

(
1− c˜̃y) ˜̃y
a

−s˜̃y
L

+
b1˜̃y˜̃z(
b+ ˜̃y)2 − b1˜̃y

b+ ˜̃y
0

bb2˜̃z(
b+ ˜̃y)2 −A2

˜̃z


=

[˜̃
bij

]
.

Direct computation shows that J (e5) has the following eigenvalues,

λ51 = r − a1(1− c˜̃y)˜̃y
a

, λ52 =
T5

2
− 1

2

√
T5

2 − 4D5, λ53 =
T5

2
+

1

2

√
T5

2 − 4D5,

where,

T5 = ˜̃y
− s

L
+

b1˜̃z(
b+ ˜̃y)2

−A2
˜̃z,

D5 = −˜̃y
− s

L
+

b1˜̃z(
b+ ˜̃y)2

(
A2

˜̃z)+

 bb2˜̃z(
b+ ˜̃y)2

[
b1˜̃y
b+ ˜̃y

]
.
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Therefore, it is simple to check that conditions (15) and (16) guarantee that all the above eigen-
values have negative real parts. Hence, e5 is asymptotically stable locally. Moreover, it is ob-

tained that λ51 = 0 when = r∗, and ˜̃V = (1, ρ1, ρ2)
T , where ρ1 = −

˜̃
b21

˜̃
b33˜̃

b22
˜̃
b33 − ˜̃

b23
˜̃
b32

> 0 and

ρ2 =
˜̃
b21

˜̃
b32˜̃

b22
˜̃
b33 − ˜̃

b23
˜̃
b32

> 0, is the eigenvector of J (e5) related to λ51 = 0. While ˜̃φ = (1, 0, 0)
T is the

eigenvector related to λ51 = 0 for [J (e5)]
T . In addition to above, the calculation shows that,

˜̃φT
[
df

dr
(e5, r

∗)

]
= 0,

˜̃φT
[
d

dX
fr (e5, r

∗) ˜̃V ] = 1 ̸= 0,

˜̃φT
[
d2

dX2
f(e5, r

∗)( ˜̃V , ˜̃V )] = 2

[
−a1˜̃y(1− c˜̃y)

aK
+

a1˜̃y(1− c˜̃y)2
a2

−
a1

(
1− 2c˜̃y)
a

ρ1

 ̸= 0.

Thus, the TCB occurs and the proof is complete.

Theorem 5.5. The z free EP, e6 = (ˇ̌x, ˇ̌y, 0), is asymptotically stable locally if the following requirements
occur,

a1
(
1− cˇ̌y

)2 ˇ̌y[
a+ ˇ̌x

(
1− cˇ̌y

)]2 <
r

K
, (18)

ˇ̌y <
1

2c
, (19)

b2 ˇ̌y

b+ ˇ̌y
+A1 < d2. (20)

However, there is a TCB a round e6 when d2 = A1 +
b2 ˇ̌y

b+ ˇ̌y
(≡ d∗2) provided that,

bb2

(b+ ˇ̌y)
2ω2 −A2 ̸= 0. (21)

Proof. Straightforward calculation gives that the VM of the system (2) at e6 is written as,

J (e6) =



−r ˇ̌x

K
+

a1(1− cˇ̌y)
2 ˇ̌xˇ̌y[

a+ ˇ̌x(1− cˇ̌y)
]2 ˇ̌x

(
aa1(1− 2cˇ̌y

)
+ ax̌(1− cˇ̌y)

2
)[

a+ ˇ̌x(1− cˇ̌y)
]2 0

aa2 ˇ̌y(1− cˇ̌y)[
a+ ˇ̌x(1− cˇ̌y)

]2 −sˇ̌y

L
− aa2cˇ̌xˇ̌y[

a+ ˇ̌x(1− cˇ̌y)
]2 − b1 ˇ̌y

b+ ˇ̌y

0 0
b2 ˇ̌y

b+ ˇ̌y
+A1 − d2


=

[
ˇ̌bij

]
.

Therefore, the eigenvalues are computed by,

λ61 =
T6

2
− 1

2

√
T6

2 − 4D6, λ62 =
T6

2
+

1

2

√
T6

2 − 4D6, λ63 =
b2 ˇ̌y

b+ ˇ̌y
+A1 − d2,
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where,

T6 = ˇ̌x

[
− r

K
+

a1(1− cˇ̌y)
2 ˇ̌y[

a+ ˇ̌x(1− cˇ̌y)
]2
]
+ ˇ̌y

[
− s

L
− aa2cˇ̌x[

a+ ˇ̌x(1− cˇ̌y)
]2
]
,

D6 = ˇ̌xˇ̌y

[
− r

K
+

a1(1− cˇ̌y)
2 ˇ̌y[

a+ ˇ̌x(1− cˇ̌y)
]2
][

− s

L
− aa2cˇ̌x[

a+ ˇ̌x(1− cˇ̌y)
]2
]

+

[
ˇ̌x
(
aa1(1− 2cˇ̌y

)
+ ax̌(1− cˇ̌y)

2
)[

a+ ˇ̌x(1− cˇ̌y)
]2

][
aa2 ˇ̌y(1− cˇ̌y)[
a+ ˇ̌x(1− cˇ̌y)

]2
]
.

Verifying that is simple all the above eigenvalues have negative real parts under the conditions
(18)-(20). Hence the solutions of system (2) approach asymptotically to e6 locally.

Now, when d2 = d∗2, further computation leads to that λ63 = 0with corresponding eigenvector

ˇ̌V = (ω1, ω2, 1)
T , where ω1 =

ˇ̌b12
ˇ̌b23

ˇ̌b11
ˇ̌b22 − ˇ̌b12

ˇ̌b21
< 0 and ω2 = −

ˇ̌b11
ˇ̌b23

ˇ̌b11
ˇ̌b22 − ˇ̌b12

ˇ̌b21
> 0. However, the

eigenvector corresponding the zero eigenvalues of [J (e6)]
T is given by ˇ̌φ = (0, 0, 1)

T . In addition
to the above we obtain that,

ˇ̌φ
T
[
df

dd2
(e6, d

∗
2)

]
= 0,

ˇ̌φ
T
[
d

dX
fd2

(e6, d
∗
2)

ˇ̌V ] = −1 ̸= 0,

ˇ̌φ
T
[
d2

dX2
f(e6, d

∗
2)(

ˇ̌V, ˇ̌V )] = 2

[
bb2

(b+ ˇ̌y)
2ω2 −A2

]
̸= 0.

Thus, TCB a round e6 takes place under the condition (21).

Theorem 5.6. The survival point, e7 = (x∗, y∗, z∗), is asymptotically stable locally if the following re-
quirements occur,

a1(1− cy∗)
2
y∗

[a+ x∗ (1− cy∗)]
2 <

r

K
, (22)

y∗ <
1

2c
, (23)

b1z
∗

(b+ y∗)
2 <

s

L
+

aa2cx
∗

[a+ x∗ (1− cy∗)]
2 . (24)

While saddle-node bifurcation (SNB) takes place a round e7 when A2 =
m11m23m32

(m12m21 −m11m22)z∗
(≡ A∗

2)

provided that,

η1c11
∗ + η2c21

∗ + c31
∗ ̸= 0. (25)
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Proof. Straightforward calculation gives that the VM of the system (2) at e7 is written as,

J (e7) =



−rx∗

K
+

a1(1− cy∗)
2
x∗y∗

[a+ x∗(1− cy∗)]
2 −

a1x
∗
[
a (1− 2cy∗) + x∗(1− cy∗)

2
]

[a+ x∗(1− cy∗)]
2 0

aa2(1− cy∗)y∗

[a+ x∗(1− cy∗)]
2 −sy∗

L
− aa2cx

∗y∗

[a+ x∗(1− cy∗)]
2 +

b1y
∗z∗

(b+ y∗)
2 − b1y

∗

(b+ y∗)

0
bb2z

∗

(b+ y∗)
2 −A2z

∗


,

= [mij ] .

Then, the eigenvalues can be computed from the equation,

λ3 +G1λ
2 +G2λ+G3 = 0,

where:

G1 = −
(
m11 +m22 +m33

)
,

G2 = m11m22 −m12m21 +m11m33 +m22m33 −m23m32,

G3 = −
(
m11m22m33 −m11m23m32 −m12m21m33

)
.

It is observed that the conditions (22)-(24) ensure that G1 > 0; G3 > 0 and ∆ = G1G2 −G3 > 0.
Thus all roots of the above third-order equation have negative real parts due to the Routh-Hurwitz
method. So, e7 is locally asymptotic stable.

Now simple calculation shows that G3 = 0, when A2 = A∗
2, then J (e7) has λ∗ = 0 with the other

two negative real parts eigenvalues. Moreover, it has obtained that the eigenvectors related with
λ∗ = 0 for J (e7) and [J (e7)]

T are given by V ∗ = (τ1, τ2, 1)
T and φ∗ = (η1, η2, 1)

T respectively,
where,

τ1 =
m12m23

m11m22 −m12m21
< 0, τ2 =

−m11m23

m11m22 −m12m21
> 0,

η1 =
m21m32

m11m22 −m12m21
< 0, η2 =

−m11m32

m11m22 −m12m21
< 0.

In addition, it has been obtained that,

φ∗T
[

df

dA2
(e7, A

∗
2)

]
= −z∗

2

̸= 0,

φ∗T [
d2

dX2
f(e7, A

∗
2)(V

∗, V ∗)] = η1c11
∗ + η2c21

∗ + c31
∗,

where,

c11
∗ = 2

[
− r

K
+

aa1y
∗(1− cy∗)

2

(a+ x∗ (1− cy∗))
3

]
τ1

2 +
2aa1cx

∗(a+ x∗)

(a+ x∗ (1− cy∗))
3 τ2

2

− 2aa1 (a (1− 2cy∗) + x∗ (1− cy∗))

(a+ x∗ (1− cy∗))
3 τ1τ2,
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c21
∗ = − 2aa1y

∗(1− cy∗)
2

(a+ x∗ (1− cy∗))
3 τ1

2 − 2bb1

(b+ y)
2 τ2 +

2aa1 (a (1− 2cy∗) + x∗ (1− cy∗))

(a+ x∗ (1− cy∗))
3 τ1τ2

− 2

[
s

L
+

aa2cx
∗(a+ x∗)

(a+ x∗ (1− cy∗))
3 − bb1z

∗

(b+ y∗)
3

]
τ2

2,

c31
∗ =

−2bb2z
∗

(b+ y∗)
3 τ2

2 +
2bb2

(b+ y∗)
2 τ2 − 2A∗

2.

Therefore, φ∗T [D2f(E7, A
∗
2)(V

∗, V ∗)] ̸= 0 under the condition (25), and hence SNB occurs.

6 Worldwide Stability

The Lyapunov approach for stability is utilized in this part to examine the worldwide stability
of EPs of the system (2) whenever possible. The worldwide stability requirements of these points
are established in the next theorems. Since it is commonly known that locally unstable points
cannot be worldwide stable, we restrict our analysis in the following theorems to locally stable
points.

Theorem 6.1. The EP, e1 = (x̆, 0, 0) = (K, 0, 0), is a worldwide asymptotically stable (WAS) provided
that,

s+
a2x̆

a
< d1. (26)

Proof. Consider the function L1 =
a2
a1

(
x− x̆− x̆ln

x

x̆

)
+ y +

b1
b2
z, then we have,

dL1

dt
= −a2

a1

r

K
(x− x̆)

2
+ x̆

a2 (1− cy) y

a+ x(1− cy)
+ (s− d1) y −

s

L
y2 +

b1
b2

(A1 − d2) z −
b1
b2
A2z

2.

By doing some algebraic steps, it is obtained that,

dL1

dt
≤ −a2

a1

r

K
(x− x̆)

2
+

[
a2x̆

a
+ s− d1

]
y +

b1
b2

[A1 − d2] z.

Therefore, dL1

dt
< 0 under the conditions (26) and (11), hence e1 is a WAS.

Theorem 6.2. The EP, e2 = (0, ŷ, 0) =

(
0,

(s− d1)L

s
, 0

)
is WAS provided that,

b2ŷ

b
+A1 < d2, (27)

r

a1
<

ŷ

a+K
. (28)

Proof. Let L2 =
a2
a1

x+

(
y − ŷ − ŷln

y

ŷ

)
+

b1
b2
z be a scalar positive definite function. Then we have,

dL2

dt
=

a2
a1

rx
(
1− x

K

)
− s

L
(y − ŷ)

2 − a2 (1− cy) ŷx

a+ x (1− cy)
+

b1ŷz

b+ y
+

b1
b2
A1z −

b1
b2
A2z

2 − b1
b2
d2z.
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By doing some algebraic manipulations, it results that,

dL2

dt
< −

[
ŷ

a+K
− r

a1

]
a2x− s

L
(y − ŷ)

2 − b1z

[
d2
b2

− ŷ

b
− A1

b2

]
.

Therefore, dL2

dt
< 0 provided the conditions (27) and (28) hold. Hence e2 is a WAS.

Theorem 6.3. The y free EP, e4 = (x̆, 0, z) =

(
K, 0,

A1 − d2
A2

)
is aWAS if the following condition holds,

s+
a2x̆

a
< d1 +

b1z

b
. (29)

Proof. Consider the function L3 =
a2
a1

(
x− x̆− x̆ln

x

x̆

)
+ y +

b1
b2

(
z − z − zln

z

z

)
, then we have,

dL3

dt
= −a2

a1

r

K
(x− x̆)

2
+ x̆

a2 (1− cy) y

a+ x(1− cy)
+ s

(
1− y

L

)
y − d1y −

b1zy

b+ y
− b1

b2
A2(z − z)

2
.

Moreover, it is determined that,

dL3

dt
≤ −a2

a1

r

K
(x− x̆)

2
+

[
a2x̆

a
+ s− d1 −

b1z

b

]
y − b1

b2
A2(z − z)

2
.

Hence, dL3

dt
< 0 if the condition (29) holds. Therefore, e4 is a WAS.

Theorem 6.4. The x free EP, e5 = (0, ˜̃y, ˜̃z), is a WAS when the following conditions hold,

r

a1
<

˜̃y
a+K

, (30)

b1˜̃z
b
(
b+ ˜̃y) <

s

L
. (31)

Proof. Let L4 =
a2
a1

x+ y − ˜̃y − ˜̃yln y˜̃y +
b1(b+ ˜̃y)

bb2

(
z − ˜̃z − ˜̃zln z˜̃z

)
, then we have,

dL4

dt
= r

a2
a1

x
(
1− x

K

)
−

 s

L
− b1˜̃z

(b+ y)
(
b+ ˜̃y)

(
y − ˜̃y)2

− a2 (1− cy) ˜̃yx
a+ x (1− cy)

− b1(b+ ˜̃y)
bb2

A2(z − ˜̃z)2.
Furthermore, it is obtained that,

dL4

dt
< −

[ ˜̃y
a+K

− r

a1

]
a2x−

 s

L
− b1˜̃z

b
(
b+ ˜̃y)

(
y − ˜̃y)2

−
b1

(
b+ ˜̃y)
b2b

A2(z − ˜̃z)2.
Therefore, due to the given conditions, dL4

dt
< 0. Thus, e5 is a WAS.
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Theorem 6.5. The z free EP, e6 = (ˇ̌x, ˇ̌y, 0), is a WAS under the conditions,

q12
2 < 4q11q22, (32)
r

K
>

a1 ˇ̌y (1− cy)
(
1− cˇ̌y

)
R ˇ̌R

, (33)

d2 >
b2
b1

˘̆y +A1, (34)

where R = a+ x(1− cy) and ˇ̌R = a+ ˘̆x(1− c˘̆y), while q11, q12 and q22 are stated in the proof.

Proof. Define the function L5 = x− ˇ̌x− ˇ̌xln
x
ˇ̌x

+y− ˇ̌y− ˇ̌yln
y
ˇ̌y
+

b1
b2
z, then by doing some algebraic

steps yield that,

dL5

dt
≤ −q11

(
x− ˇ̌x

)2 − q22
(
y − ˇ̌y

)2
+ q12

(
x− ˇ̌x

) (
y − ˇ̌y

)
−
[
b1(d2 −A1)

b2
− ˘̆y

]
z,

where,

q11 =
r

K
−

a1 ˇ̌y (1− cy)
(
1− cˇ̌y

)
R ˇ̌R

,

q22 =
s

L
+

aa2cx

R ˇ̌R
,

q12 =
aa2

(
1− cˇ̌y

)
+ a1c

2 ˇ̌xˇ̌yy + a1c
(
y + ˘̆y

)(
a+ ˘̆x

)
− a1

(
a+ ˘̆x

)
R ˇ̌R

.

Now by using the given conditions we obtains that,

dL5

dt
≤ −

[√
q11

(
x− ˇ̌x

)
−√

q22
(
y − ˇ̌y

)]2 − [
b1(d2 −A1)

b2
− ˘̆y

]
z.

Therefore, dL5

dt
< 0, and hence e6 is a WAS.

Theorem 6.6. The survival point, e7 = (x∗, y∗, z∗) is a WAS under the conditions,

a1y
∗

aR∗ (1− cy∗) <
r

K
, (35)

z∗

B∗ <
s

L
, (36)

p12
2 < 2p11p22, (37)

p23
2 < 2p22p33, (38)

where B = b+ y; B∗ = b+ y∗, R∗ = a+ x∗(1− cy∗), while pij are given below.

Proof. Let L6 = x − x∗ − x∗ln
x

x∗ + y − y∗ − y∗ln
y

y∗
+ z − z∗ − z∗ln

z

z∗
. Then using some

mathematical steps, it is observed,

dL6

dt
≤ −p11(x− x∗)

2
+ p12 (x− x∗) (y − y∗)− p22(y − y∗)

2
+ p23 (y − y∗) (z − z∗)− p33(z − z∗)

2
,
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where,

p11 =
r

K
− a1y

∗

RR∗ (1− cy∗)(1− cy),

p22 =
s

L
− bz∗

BB∗ +
aa1cx

RR∗ ,

p12 =
a1

RR∗

[
c (y + y∗) (a+ x∗)−

(
a+ x∗ (1 + c2y∗y

))
+ a(1− cy∗)

]
,

p23 =
b

BB∗ (b2 −B∗) ,

p33 = A2.

Using the above conditions yield that,

dL6

dt
≤ −

[
√
p11 (x− x∗)−

√
p22
2

(y − y∗)

]2
−

[√
p22
2

(y − y∗)−√
p33 (z − z∗)

]2
.

Therefore, dL6

dt
< 0, and hence e7 is a WAS.

7 Numerical Simulation

Two goals are achieved in this part, the first of which is the validation of the analytical results.
The second goal is to investigate the role of changing the system’s parameters (2) on its asymptotic
behavior. Now, beginning from three different initial locations as depicted in Figure (1), system
(2) approaches asymptotically to a survival point that is provided by e7 = (43.6, 10.61, 7.36),

r = 1, s = 1, K = 40, L = 40, a1 = 1, a = 10,

c = 0.1, a2 = 0.75, b1 = 1, b = 10, b2 = 0.75,

A1 = 0.5, A2 = 0.1, d1 = 0.1, d2 = 0.15.

(39)

Obviously, Figure 1 shows clearly the existence of aWAS to a survival point as proved in Theorem
6.6.
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Figure 1: Time series for the trajectory of the system (2) using the set (39) that approaches asymptotically to e7.

As demonstrated in Figure 2, the trajectory of the system (2) nowmoves asymptotically to the
y free EP, e4 = (40, 0, 3.5) for the set (39) with b ≤ 1.5. This supports the analytical findings of
Theorem 6.3.
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Figure 2: The trajectory of the system (2) using (39) with b = 1.5: (a) System (2) approaches asymptotically to e4. (b) Trajectories versus
time in (a).

According to the typical figure provided by Figure 3, the trajectory of the system (2) goes
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asymptotically to the x free EP for the set (39) with c ≤ 0.02. Once more, this supports the ana-
lytical finding presented in Theorem 6.4.
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Figure 3: The trajectory of system (2) using (39) with c = 0.02: (a) System (2) approaches asymptotically to e5 = (0, 26.11, 8.92). (b)
Trajectories versus time in (a).

It is noted that the trajectory of system (2) returns to the y free EP as shown in Figure 2 for the
data (39) with b1 ≥ 4.3.

The trajectory of system (2) approaches asymptotically to y free EP for the data (39)withA1 ≥ 1.79
or A2 ≤ 0.02, as seen in the typical figures illustrated by Figures 4 and 5, respectively.
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Figure 4: The trajectory of the system (2) using (39) withA1 = 1.8: (a) System (2) approaches asymptotically to e4 = (40, 0, 16.5). (b)
Trajectories versus time in (a).
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Figure 5: The trajectory of the system (2) using (39) with A2 = 0.02: (a) System (2) approaches asymptotically to e4 = (40, 0, 17.5).
(b) Trajectories versus time in (a).

The trajectory of the system (2) nowmoves asymptotically to the z free equilibriumpoint as shown
in the typical figure provided by Figure 6 for the set (39)with d2 ≥ 0.9. This supports the analytical
findings of Theorem 6.5.
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Figure 6: The trajectory of the system (2) using (39) with d2 = 0.9: (a) System (2) approaches asymptotically to e6 = (47.67, 10.95, 0).
(b) Trajectories versus time in (a).

The position of the survival point is also seen to shift quantitatively when one of the parameters
r, s, K, L, a, a1, a2, and d1 is changed using the hypothetical set (39) in consideration. This
occurred because of the given data’s inability to satisfy the bifurcation conditions, and as a result,
the bifurcation may occur for another set of parameters.

On the other hand, the trajectory of the system (2) converges asymptotically to the y free EP
for the data (39) with s = 0.1 and d1 = 0.8, indicating that condition (10) holds but condition
(11) does not. The system (2) does, however, asymptotically approach the e1 after the parameter
A1 lowers so that condition (11) applies, as seen in Figure 7.
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Figure 7: (a) The time series of the system (2), using (39) with s = 0.1 and d1 = 0.8, which approaches asymptotically to e4 =
(40, 0, 3.5). (b) The time series of the system (2), using (39) with s = 0.1, d1 = 0.8, and A1 = 0.12, which approaches asymptotically
to e1 = (40, 0, 0).

Finally, the trajectory of the system (2) approaches asymptotically to the x free EP for the data
(39) with A1 = 0.1 and c = 0.01, condition (12) holds whereas the condition given by (13) does
not. The system (2) does, however, asymptotically approach the e2 point after the parameter d2
grows such that condition (13) applies, as seen in Figure 8.
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Figure 8: (a) The time series of the trajectory of the system (2), using (39) withA1 = 0.1 and c = 0.01, which approaches asymptotically
to e5 = (0, 30.95, 5.16). (b) The time series of the trajectory of the system (2), using data (34) withA1 = 0.1, c = 0.01, and d2 = 0.75,
which approaches asymptotically to e2 = (0, 36, 0).

8 Discussion and Conclusions

An ecological model with a food chain that includes refugees at the first level and is propor-
tional to the presence of mid-predators with the inclusion of additional food sources in the second
and third levels is presented and examined in this research. There are shown to be all potential
EPs. The system’s local and worldwide stability are both investigated. All of the local bifurca-
tion conditions that ensure bifurcation will occur near the EPs have been defined. The system
is ultimately numerically simulated to confirm what we discovered and understand the effects of
altering parameter values on the system’s asymptotic behavior. The system is seen to have rich dy-
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namics and to be responsive to changing parameter values. In fact, it has been found that raising
the amount of refugees in the population has a stabilizing effect on the system’s dynamic behavior.
Expanding the top predator’s alternative food sources causes the mid-predator to go extinct and
destabilizes the ecosystem as a whole. However, it was found that additional food has a negative
effect on predator biomass, which means additional food does not always enhance the growth of
predators [24]. Mondal et al. [23] have observed that the predator, prey, and subsidy can always
exist at a nonzero subsidy input rate, while at a high subsidy input rate, the prey population cannot
persist and the predator population is growing hugely due to the availability of food sources.
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